Change of Variables in Multiple Integrals 

 

 

Carl  Gustav Jacob Jacobi was one of Germany's most distinguished mathematicians during the first half of the nineteenth century. He  worked and studied the functional determinant now called the Jacobian. Jacobi was not the first to study the functional determinant which now bears his name. But his work with functional determinants is what secured his place in history.  Jacobi wrote a long memoir called De determinantibus functionalibus in 1841 devoted to the Jacobian. This determinant is in many ways the multivariable analogue to the differential of a single variable. 

Carl  Gustav Jacob Jacobi 

1804-1851
Image
 

was born in  

Potsdam, Prussia (now Germany) 

and died in  

Berlin, Germany 

 

We have already seen that for functions of one variable the chain rule 

`/`(`*`(df), `*`(du)) = `*`(`/`(`*`(df), `*`(dx)), `/`(`*`(dx), `*`(du))) 

at once gives the rule for change of a variable in a definite integral 

 

There is a formula analogous to this for double and triple integrals. 

 

Change of Variables for Double Integrals 

Let fbe a continuous function on a region R in the xy-plane, and let the transformation x = x(u, v), y = y(u, v)maps the region S in the uv-plane into the region R. Then 

 

where J(u, v) is the Jacobian and dA represents either dudv or  

 

Change of Variables for Double Integrals 

 

The change of variables formula for triple integrals is similar to the one given above for double integrals. 

 

Change of Variables for Triple Integrals 

Let fbe a continuous function on a region V in the xyz-space, and let the transformation x = x(u, v, w), y = y(u, v, w)maps the region T in the uvw-space into the region V. Then 

 

where J(u, v, w) is the Jacobian and dV the region i uvw-space. 

 

Change of Variables for Double Integrals 

 

If x = x(u, v), y = y(u, v) or x = x(u, v, w), y = y(u, v, w), z = z(u, v, w) is a one-to-one transformation, then u = u(x, y), v = v(x, y)or it can be shown that 

 

1,  1 

 

The following commands in the calcplot package plot images of regions under arbitrary coordinate transformations. With these commands we can check whether the description of a new region under a change of coordinates is correct. 

 

 

 

 

In the linalg package
 

 

 

 

 

Example 1 

Find the region R in the xy-plane corresponding to the region S in the uv-plane where 

a)  `<=`(0, u) and `<=`(0, v) under the change of variables x = `+`(u, `*`(2, `*`(v))), y = `+`(u, `-`(v)).
b) `<=`(1, u) and `<=`(0, v) under the change of variables x = `*`(v, `*`(cos, `*`(u))), y = `*`(v, `*`(sin, `*`(u))). 

Find the region V in the xyz-plane corresponding to the region T in the uvw-plane where 

c)  `<=`(1, u), `<=`(0, v), and `<=`(0, w) under the change of variables x = `+`(u, v, w), y = `+`(`*`(2, `*`(u)), `-`(v), `-`(`*`(2, `*`(w)))), z = `+`(`-`(u), `*`(3, `*`(v)), `-`(w)). 

> restart: MathMaple:-ini():
 

Solution 

a) 

`<=`(0, u),  `<=`(0, v)  

> regionplot2d(u=0..4,v=0..3,[u,v],labels=[u,v],color=blue,tickmarks=[6,6]);
 

Plot_2d
 

x = `+`(u, `*`(2, `*`(v))), y = `+`(u, `-`(v)) 

> regionplot2d(u=0..4,v=0..3,[u+2*v,u-v],labels=[x,y],color=red,tickmarks=[6,6]);
 

Plot_2d
 

b) 

`<=`(1, u), `<=`(0, v)  

> regionplot2d(u=1..3,v=0..2,[u,v],labels=[u,v],color=blue,tickmarks=[6,6]);
 

Plot_2d
 

x = `*`(v, `*`(cos, `*`(u))), y = `*`(v, `*`(sin, `*`(u))) 

> regionplot2d(u=1..3,v=0..2,[v*cos(u),v*sin(u)],labels=[x,y],color=red,tickmarks=[6,6]);
 

Plot_2d
 

c) 

`<=`(1, u), `<=`(0, v), `<=`(0, w) 

> regionplot3d(u=1..3,v=0..2,w=1..4,[u,v,w],style=patchnogrid, lightmodel=light4,labels=[u,v,w],axes=frame,tickmarks=[4,4,4],orientation=[-73,75],transparency=0.5);
 

Plot_2d
 

x = `+`(u, v, w), y = `+`(`*`(2, `*`(u)), `-`(v), `-`(`*`(2, `*`(w)))), z = `+`(`-`(u), `*`(3, `*`(v)), `-`(w)) 

> regionplot3d(u=1..3,v=0..2,w=1..4,[u+v+w,2*u-v-2*w,-u+3*v-w],style=patchnogrid, lightmodel=light2,labels=[x,y,z],axes=frame,tickmarks=[0,0,0],orientation=[-73,75],transparency=0.5);
 

Plot_2d